The inverse of a tridiagonal matrix

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an Inverse Formula of a Tridiagonal Matrix

This paper provides an inverse formula freed of determinant expressions for a general tridiagonal matrix. This is viewed as an alternative version of the Usmani formula, which easily tends to blow up computationally. We discuss a number of different viewpoints regarding the proposed and Usmani’s formulas, such as the proof method and the meaning of included terms, although our formula itself ma...

متن کامل

Explicit inverse of a tridiagonal k-Toeplitz matrix

We obtain explicit formulas for the entries of the inverse of a nonsingular and irreducible tridiagonal k−Toeplitz matrix A. The proof is based on results from the theory of orthogonal polynomials and it is shown that the entries of the inverse of such a matrix are given in terms of Chebyshev polynomials of the second kind. We also compute the characteristic polynomial of A which enable us to s...

متن کامل

Inverse Tridiagonal

In this paper, we consider matrices whose inverses are tridiagonal Z{matrices. Based on a characterization of symmetric tridiagonal matrices by Gantmacher and Krein, we show that a matrix is the inverse of a tridiagonal Z{matrix if and only if, up to a positive scaling of the rows, it is the Hadamard product of a so called weak type D matrix and a ipped weak type D matrix whose parameters satis...

متن کامل

Explicit inverse of tridiagonal matrix with applications in autoregressive modeling

We present the explicit inverse of a class of symmetric tridiagonal matrices which is almost Toeplitz, except that the first and last diagonal elements are different from the rest. This class of tridiagonal matrices are of special interest in complex statistical models which uses the first order autoregression to induce dependence in the covariance structure, for instance, in econometrics or sp...

متن کامل

A Tridiagonal Matrix

 = αI +βT, where T is defined by the preceding formula. This matrix arises in many applications, such as n coupled harmonic oscillators and solving the Laplace equation numerically. Clearly M and T have the same eigenvectors and their respective eigenvalues are related by μ = α+βλ . Thus, to understand M it is sufficient to work with the simpler matrix T . Eigenvalues and Eigenvectors of T Usu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2001

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(00)00262-7